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Abstract A simplified Hückel-type molecular-orbital (MO) model for the valence
electrons of saturated hydrocarbons is proposed and the consequent eigenvalue spec-
trum considered. A first foundational result is obtained, which every chemist “knows”,
namely that: alkanes are stable, with half their (Hückel-type MO) eigenvalues positive
and half negative.
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1 Saturated hydrocarbons and the stellation model

Saturated hydrocarbons have long (that is, for well more than a century) served as the
foundational introduction to organic chemistry. During the last four decades chemical
graph theory has become prominent—much of it dedicated to classical Hückel theory
of conjugated π -electron networks, where the Hückel Hamiltonian coincides (up to a
shift and scale) with the mathematical graph-theoretic adjacency matrix, for example,
as emphasized in [12]. Along with this application of mathematical graph theory there
has been extensive development of an extensive array of molecular topological indices,
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Fig. 1 The graphs of the
saturated hydrocarbons methane
CH4 and ethane C2H6. These
are both alkanes. The degree-one
vertices correspond to H atoms
and the degree-four sites
correspond to C atoms

mostly for uses in QSAR, for example, as reviewed in [5]. Yet there has also been
a sporadic array of several other usages of chemical graph theory, say as in isomer
enumeration, for example, with a special issue of MATCH devoted to this [7]. But
what is (possibly) amazing is that there has been practically no effort to use chemical
graph theory for describing the electronic structure of molecules other than conjugated
hydrocarbons.

Here a step is taken towards the rectification of this utter paucity of application
of mathematical graph theory to other comparable electronic-structure problems. In
particular, here a simple Hückel-type MO model for the valence electrons of saturated
hydrocarbons is described and then some first consequential results are obtained.

Definition 1.1 A saturated hydrocarbon is a connected graph whose vertices have
both degrees one and four and no other degrees.

The degree-4 and degree-1 vertices respectively correspond to C and H atoms. See,
for example, Fig. 1. The present electronic-structure model is framed in terms of the
four sp3-hybrid orbitals of each carbon atom along with the single 1s-orbital of each
hydrogen. The stellated graph G∗ associated to this model for a saturated hydrocarbon
has a vertex set V ∗ = V (G∗) corresponding to each of these orbitals (four for each
C and one for each H) with an edge set E∗ = E(G∗) partitioned into two subsets of
edges, namely internal edges E∗

int and external edges E∗
ext . This internal set consists

of six edges for the four hybrid orbitals of each C atom (that is, each such orbital in
a C atom is bonded or linked together by an edge of E∗

int ), and each external bond
e∗ ∈ E∗

ext corresponds to a unique edge e of G interconnecting the same pair of
atoms—each vertex of G∗ is connected to a unique other vertex (of G∗) in the other

Fig. 2 The stellated graphs of the saturated hydrocarbons methane CH4 and ethane C2H6. The pendant
edges and edge v2v6 have unit weight. These are (the highlighted) external edges corresponding to the
edges of CH4 and C2H6. The internal edges, forming four-element cliques, are edges with weight w. For
stellated methane and ethane with internal edges of any weight, the determinant is, respectively, 1 and −1.
Lemma 2.2 then implies that half the eigenvalues are positive and half are negative. With internal weights
w = 0.5, the eigenvalues are (approximately) 2.0, 0.78, 0.78, 0.78,−0.5,−1.28,−1.28,−1.28
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atom to which e connects. Thus, for example, methane and ethane commonly denoted
in Fig. 1 give rise to the electronic structure graphs G∗ of Fig. 2, where the external
edges are shown in bold. Chemically, each C-atom hybrid (represented by a v∗ ∈ V ∗)
points along one bond direction to interact with a unique other orbital in another atom
(such as indicated in G), while also there are interactions amongst the hybrids within
the same atom.

Mathematically one may represent the vertex and edge sets of G∗ thusly.

Definition 1.2 The stellation of a graph G is the graph G∗ with vertices V (G∗) =
∪ab∈E(G){(a, b), (b, a)}. Vertices (x, y), (z, w) ∈ V (G∗) are adjacent if, and only
if, either x = z or both x = w and y = z. Then E∗

int = {(a, b)(b, a) : a ∼
b in G}, E∗

ext = {(a, b)(a, c) : a ∼ b and a ∼ c in G}, and E(G∗) = E∗
int ∪ E∗

ext .

Clearly, |V (G∗)| = 2|E(G)|, and |E∗
ext | = |E(G)|. Note that, for a fixed vertex v,

the vertices in the set {(v, a) : v ∼ a ∈ V (G)} form a clique in G∗. Note too that the
external edges form a perfect matching (or “Kekule structure”) of G∗.

Now our stellated graphs are complicit in much early work on alkanes. For repre-
sentative historic examples see Sandorfy [22], Fukui et al. [8], or Pople and Santry
[19] (or in a much more disguised form in Hoffmann [14]). More recently there has
been some modest amount of work also, for example, in [9,10]. But in all these works,
the aim seems to be to develop an elaborate parameterization to closely mimic (SCF)
ab initio computations so as to enable facile application to individual molecules, one
after another, after another, etc. In contrast here, we propose simplified models for
which general theorems might be developed for whole (infinite) classes of molecules.
Recently on the mathematical side, para-line graphs have been described [23] as
derived from a parent graph by taking the line graph of the graph obtained via sub-
division of the edges of G. Indeed then this para-line graph is our stellated graph
G∗.

In these earlier chemical works [8–10,19,22] the graph becomes quite decorated
with different weights. Amongst such modifications, the most important gives differ-
ent weights to the internal and external graph edges—appropriate weightings for the
internal edges being in the neighborhood of half the weighting for the external edges
(whose weights we take = 1). In this earlier work the C–C and C–H external bonds
are weighted differently, typically differing in weight by <10 %, so it seems a not
too unreasonable approximation for our general purposes to treat these as equivalent.
A more severe approximation which we here also make is to treat the orbitals of the
H and C atoms as equivalent (i.e., to take their diagonal matrix elements equal, here
shifted to = 0)—in a better imitation of reality these should differ from one another
by roughly 1/4 of the C–C (external edge) interaction.

A common introductory chemistry description neglects the internal interactions to
leave only the external interactions, with an externally bonded pairs forming C–C or
C–H bond orbitals, each of which is then doubly occupied (spin-up and spin-down)—
see also Pople and Santry [19, Theorem 1]. (That our theorem makes notably less
severe presumptions on the parameter values, indicates its conceptual value, as Pople
and Santry viewed such a weaker theorem important to state.) The other antisymmetric
bond orbitals play a role in the excited states of saturated hydrocarbons [13,20]. Finally
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some other possible early realizations of our stellated graphs are mentioned in our
conclusions.

2 Results

For a stellated graph G∗ with vertex set V (G∗) = {v1, . . . , vn} we define a weighted
adjacency matrix Aw as follows: Aw

i, j = 1 if viv j is an external edge in G∗, Aw
i, j = w

if viv j is a internal edge, and Aw
i, j = 0 otherwise. Aw is the weighted adjacency matrix

for G∗, and typically w ∈ [0, 1). When no confusion is possible, we abuse notation
and denote the weighted adjacency matrix of G∗ by “G∗”.

We utilize the definition of the determinant of a matrix, defined as follows.

Definition 2.1 The determinant of an n × n square matrix A with entries Ai, j is

det A =
∑

σ∈Sn

sgn(σ )

n∏

i=1

Ai,σ (i),

where Sn is the set of permutations from [n] to itself and sgn(σ ) is 1 if σ can be
written as an even number of permutations and −1 otherwise.

Lemma 2.2 Let G be a graph with a perfect matching M, with edges in M having unit
weight and remaining edges weighted w in a (non-trivial) interval I ⊆ R containing
0, and corresponding (weighted) adjacency matrix Aw. If det Aw �= 0 for all w ∈ I
then Aw has half positive and half negative eigenvalues for each w ∈ I .

Proof Let G be a graph with a perfect matching M , with edges in M weighted one and
remaining edges weighted w ∈ I . Let Aw be the corresponding (weighted) adjacency
matrix and det Aw �= 0.

Since M is a perfect matching, in the case where w = 0, Aw is a 0-1 matrix
which is the same as the adjacency matrix for the graph induced on M . This graph
has |M | positive (+1) and |M | negative (−1) eigenvalues. The determinant det Aw

is a continuous function of w and, as w varies, the eigenvalues vary continuously.
No eigenvalue of Aw can equal 0 for any w ∈ I , for if it did then det Aw = 0,
contradicting our assumption. Since no eigenvalue can be 0, no eigenvalue can change
sign—it would have to cross through 0—and the number of positive and negative
eigenvalues remains constant for every w ∈ I . Since half are positive and half are
negative when w = 0 it follows that half are positive and half are negative for every
w ∈ I . �	

We now prove complete results for acyclic and unicyclic saturated hydrocarbons,
followed by results in the general case.

Definition 2.3 An alkane is an acyclic saturated hydrocarbon.

Alkanes, by definition, are trees whose vertices have both degrees one and four and
no other degrees. They include methane and ethane (see Fig. 1).
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Lemma 2.4 Every alkane has a vertex adjacent to either 3 or 4 pendant vertices.

Proof Let G be an alkane. Let v and w be vertices at maximum distance in G. v and w

are necessarily pendant vertices. Let v = v1, . . . , vk = w be a shortest path between
these vertices. vk−1 must have degree four. Let a and b be the non-path neighbors
of vk−1. a and b must both be pendants. Assume a is not a pendant. Let a′ be any
neighbor of a besides vk−1. There is a unique path v = v1, . . . , vk−1, a, a′ from v to
a′. This path has length k + 1 contradicting the assumption that the path from v to w

has maximum length. Thus, vk−1 has either just the three pendant neighbors a, b and
w or, in the case that k = 2 and v is adjacent to vk−1, four pendant neighbors a, b, v

and w. �	
Theorem 2.5 If G is an alkane then its stellation G∗ has half positive and half negative
eigenvalues for any real number internal edge weight w.

Proof The statement is true for the graph K1,4 (corresponding to methane CH4) rep-
resenting the smallest alkane: the stellation of this graph has non-zero determinant, for
any real number internal edge weight w. The claim then holds by Lemma 2.2. Assume
then that the claim holds for any alkane with fewer than n vertices.

Let G be an alkane with n vertices. Lemma 2.4 implies that G has a vertex with
three pendant neighbors a, b and c. Let Gv be the alkane formed by removing vertices
a, b and c from G, together with incident edges. By assumption det G∗

v �= 0 for any
internal edge weight w. We will show that det G∗ = − det G∗

v for any internal edge
weight w and, thus, det G∗ �= 0.

The vertices of G∗ include (v, a), (v, b), (v, c), (a, v), (b, v), and (c, v). Assume
G∗ has m vertices. Let vm−5 = (v, a), vm−4 = (v, b), vm−3 = (v, c), vm−2 =
(a, v), vm−1 = (b, v), and vm = (c, v). So vm−i is adjacent to vm−i−3 for i ∈ {0, 1, 2}.

Now

det G∗ =
∑

σ∈Sm

sgn(σ )

m∏

i=1

G∗
i,σ (i).

Any non-zero summand in this expression corresponds to a permutation σ ∈ Sm

that sends the index of a pendant vertex to that of its neighbor, and the index of the
neighbor back to the index of the pendant. It follows that σ contains the transpositions
(m − i, m − i − 3) for i ∈ {0, 1, 2}. Since these correspond to external edges their
weights are 1; that is, G∗

m−i−3,σ (m−i−3) = G∗
m−i,σ (m−i) = 1 for i ∈ {0, 1, 2}. Then

det G∗
v =

∑

σ ′∈Sm−6

sgn(σ ′)
m−6∏

i=1

G∗
vi,σ ′(i) .

Let σ ′ ∈ Sm−6 be any permutation corresponding to a non-zero summand in det G∗
v .

The non-zero summands in det G∗ and det G∗
v are in bijective correspondence, where

σ ∈ Sm must have the form σ = σ ′(m − 5, m − 2)(m − 4, m − 1)(m − 3, m),
with sgn(σ ) = −sgn(σ ′). Thus the non-zero summands of det G∗ are exactly the
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negatives of the non-zero summands of det Gv . So det G∗ = − det G∗
v for any internal

edge weight w, and det G∗ �= 0 by the inductive assumption. Lemma 2.2 then implies
that G∗ has half positive and half negative eigenvalues for any real number edge weight
w. �	
Lemma 2.6 If C2k is an even cycle with edge weights alternating between 1 and
w ∈ (0, 1) then det C2k �= 0.

Proof By definition,

det C2k =
∑

σ∈S2k

sgn(σ )

2k∏

i=1

C2ki,σ (i) .

There are three possibilities for the permutations corresponding to the non-zero sum-
mands. In the first case, for each of the edges weighted w, the permutation associates
each edge endpoint to the opposite endpoint. In this case the summand will equal
(−1)kw2k , as each of the k transpositions contributes w2 to the product. In the second
case, for each of the edges weighted 1, the permutation again associates each edge
endpoint to the opposite endpoint. In this case the summand will equal (−1)k1, as the
permutation can be represented as k transpositions and each of the 2k terms in the prod-
uct equals 1. In the third case, the permutation is cyclic. If V (C2k) = {v1, . . . , v2k},
then there are two non-zero cyclic permutations: (1, 2, . . . , 2k) and (2k, 2k−1, . . . , 1).
In this case the permutation can be written as 2k −1 transpositions and each summand
will equal (−1)2k−1wk .

Thus det C2k = (−1)kw2k + 2(−1)2k−1wk + (−1)k . If k is even, then det C2k =
w2k −2wk +1 = (wk −1)2. If k is odd, then det C2k = −w2k +2wk −1 = −(wk −1)2.
In either case, for w ∈ [0, 1), det C2k �= 0. �	

Lemma 2.7 If G is a saturated hydrocarbon formed from a cycle with two pendants
attached to each vertex then the stellated graph G∗ with unit weight external edges and
internal edges with weight w ∈ [0, 1) has half positive and half negative eigenvalues.

Proof Let G be a saturated hydrocarbon formed from a cycle Ck with two pendants
attached to each vertex. Let G∗ be the stellation of G. G∗ will consist of a cycle of
k order-four cliques with two pendants adjacent to each clique. See Figs. 3 and 4 for
an example. Note that the pendant vertices of G remain pendant vertices in G∗. The

Fig. 3 The graph G of the
saturated hydrocarbon
cyclobutane C4H8
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Fig. 4 The stellation G∗ of
cyclobutane C4H8

Fig. 5 What remains of the
stellation G∗ of cyclobutane
C4H8 after the pendant edges
and incident vertices are
removed. The external edges are
highlighted

edges incident to these pendant vertices are external edges of G∗ and have weight 1.
Any non-zero summand of det G∗ must correspond to a permutation that sends the
index of any pendant vertex to the index of its unique neighbor and, reciprocally, the
index of any neighbor of a pendant to the index of the pendant. The associated factors
in the product are 1. Thus for a permutation σ corresponding to a non-zero summand
of det G∗ the only values which are not forced are those corresponding to a cycle
C2k which has edge weights alternating between 1 and w ∈ [0, 1) (see Fig. 5). That
is, we have argued that det G∗ = det C2k . Lemma 2.6 implies that det C2k �= 0 and,
thus, det G∗ �= 0. Lemma 2.2 then implies that G∗ has half positive and half negative
eigenvalues, which was to be shown. �	
Theorem 2.8 If G is a unicyclic saturated hydrocarbon then its stellation G∗ has half
positive and half negative eigenvalues for any internal edge weight w ∈ [0, 1).

Proof Lemma 2.7 implies that the statement is true for the smallest unicyclic saturated
hydrocarbons. So we will assume that the statement is true for unicyclic saturated
hydrocarbons with fewer than n vertices and prove the truth of the statement for a
unicyclic saturated hydrocarbon G with n vertices.

We can assume that G is not of the form of the graphs in Lemma 2.7, which
consist of cycles with two pendants attached to every vertex. By definition G has a
cycle; but there must be a vertex at distance greater than one from this cycle. Let C
be the cycle and v be a vertex at maximum distance from C . (For a pair of vertices
x, y, d(x, y) is the distance from x to y, the length of the shortest path from x to y.
For every vertex w we let d(w, C) = min{d(u, w) : u ∈ V (C)}; then d(v, C) =
max{d(w, C) : w /∈ V (C)}.) Now by imitating the argument of Lemma 2.4, we can
assume that v′ is adjacent to three pendants a, b and c. We then let Gv be the saturated
hydrocarbon formed by deleting these pendants. Gv is unicyclic as we are deleting
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pendants away from the cycle C . Since Gv is a unicyclic saturated hydrocarbon with
fewer than n vertices it follows that G∗

v has half positive and half negative eigenvalues
and, hence, det G∗

v �= 0. And by imitating the argument of Theorem 2.5 we can show
that det G∗ = − det G∗

v and, thus, that det G �= 0. Lemma 2.2 then implies that G∗
has half positive and half negative eigenvalues. �	
Theorem 2.9 Any stellated saturated hydrocarbon with external edges of unit weight
and internal edges with weights w ∈ [0, c) has half positive and half negative eigen-
values, for some molecule-dependent constant c > 0.

Proof The statement is true for the graph K1,4 (corresponding to methane CH4),
representing the smallest saturated hydrocarbon: the stellation of this graph has half
positive eigenvalues and half negative eigenvalues. The statement is true for acyclic
and unicyclic saturated hydrocarbons. Theorems 2.5 and 2.8 show that any constant
will work in the former case, while 1 works in the latter case.

Let G be any saturated hydrocarbon. Let G∗ be its stellation with unit external edge
weights and internal edge weights w. The statement is true in the case where w = 0:
in this case the statement is equivalent to the fact that the eigenvalues of a union of
K2’s (a graph consisting of disjoint edges) are half “+1” and half “−1”. We now argue
that there is a constant c > 0 so that, for any w ∈ [0, 1), G∗ has half positive and half
negative eigenvalues.

Since we know that det G∗ is a continuous function of w and that det G∗ �= 0 when
w = 0 there must be some (non-degenerate) interval I ⊆ R containing 0 for which
det G∗ �= 0 for every w ∈ I . Then let c = sup I . The statement then follows. �	

We believe that the molecule-dependent constant c in Theorem 2.9 is in fact inde-
pendent of the molecule and, following the case of unicyclic saturated hydrocarbons,
is 1. Thus we conclude with the following conjecture. Further corroborative data is
contained in the next section.

Conjecture 2.10 Any stellated saturated hydrocarbon with external edges of unit
weight and internal edges with weights w ∈ [0, 1) has half positive and half negative
eigenvalues.

3 Data

B. McKays’ nauty program [16] was used to generate all of the saturated hydrocarbons
with up to 14 vertices. As a numerical experiment, the internal edges of the stellations
of these graphs were weighted w = 0.5, the external edges were weighted 1, and
the eigenvalues were calculated. It was found that each of these molecules has half
positive and half negative eigenvalues, in agreement with Conjecture 2.10. The data
is presented in Table 1.

It is easy to see that there is a single saturated hydrocarbon with 5 atoms, and none
with 6 atoms. There is a unique saturated hydrocarbon with 7 atoms, pictured in Fig. 6,
along with a representation of its stellation.
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Table 1 All counts are for
non-isomorphic graphs

n Number of connected graphs
with � ≤4

Number of saturated
hydrocarbons

5 21 1

6 78 0

7 353 1

8 1,929 5

9 12,207 12

10 89,402 44

11 739,335 190

12 6,800,637 995

13 68,531,618 6,211

14 748,592,936 45,116

Fig. 6 The graph on the left is the unique saturated hydrocarbon with 7 atoms. Its stellation is
on the right. With internal weight w = 0.5, the eigenvalues are (approximately) 2.46, 1.94, 1.72,

1.72, 1.62, 0.72, 0.69, 0.5, 0.5, 0.5, 0.5, −0.5,−0.72, −0.72, −0.79,−1.27, −1.36,−1.5,−1.5, −1.5,

−1.5,−1.5

4 Concluding overview

Here a simple model for saturated hydrocarbons has been described, and some first
general features established, to reveal what every chemist “knows”—that alkanes are
“stable”, which in the present language and model is to say that the MO eigenvalues
are divided with half positive and half negative. This result then is not surprising—but
rather serves as an example to indicate that further general mathematical results might
well be achievable for this class of molecules, which offers immensely greater number
of examples, than does the class of benzenoids.

The model utilized here has been described as arising in the early decades of quan-
tum chemistry. But it is somewhat amusing to note that the model we use has some
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even earlier precedents—van’t Hoff’s model [25] has in effect the external edges com-
pressed to points. Also Sylvester’s [24] molecular graphs (of 1878) look much like
our stellated ones (though he seems to make a seeming “mistake” in including only
four out of the six internal bonds for each C atom) presumably Clifford’s [3,4] model
is also similar (though there seems to be a less complete description). Arguably these
models may be viewed to involve a Clifford-algebraic (antisymmetric) pairing for each
external bond—not too unlike the later localized-bonding VB model for the saturated
hydrocarbons—something that would not take definitive form for another half cen-
tury. This in some sense disagrees with Biggs, Lloyd, and Wilson’s statement [1] that
Sylvester’s chemical ideas “went nowhere”. Instead, these early ideas would give rise
to the naming of mathematical “graph theory” and ultimately rather indirectly facil-
itate chemical graph theory. But also with Gordon and Alexejeff (who also thought
of molecular modelling [11]) and Clifford there was a development of representation
theory for groups and group algebras such as would ultimately enable the fundamental
valence-bond theoretic descriptions [17,18,21] of molecular structure—see particu-
larly Weyl’s discussion [26, Appendix D]. Simply put, these early mathematicians1

needed the vehicle of quantum mechanics to make sense of their molecular ideas.
Here though a MO model approach for our saturated hydrocarbons has been taken, a
VB-theoretic development could also be imagined to be worthwhile.

Further, extension of the current work can be imagined. Development of our simple
model to understand the cycle-containing saturated hydrocarbons would be of value.
Also elaboration of the eigenvalue distribution (as a function of structure) could be
of value, particularly as regards the gap around 0. Yet also extensions to deal with
the case that the H- and C-atom orbitals are weighted differently would be of value.
And even further, hetero-atoms might be allowed in the carbon network—one can
imagine that rather general mathematical statements might be made via a perturbed-
MO approach, like that practiced [6] in the context of ordinary Hückel theory. Indeed
this approach should prove useful to account for the difference between the site weights
for C and H orbitals—the hetero-atom weights so treated in this conventional perturbed
MO theory being more significant than for our present case (of C and H). Thence it
seems that there remains much promise for chemical graph theory, even in the context
of understanding electronic structure in a general way. See, also [15] for an even
somewhat broader discussion of such prospects.
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